

Sources of PeV to ZeV Neutrinos

Fly's Eye limits: 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*} \begin{align*} \text{Fly's Eye limits:} \\ 70 days live, \(\begin{align*}

Almost certain sources:

- Extragalactic cosmic rays
 - Produce the so-called GZK neutrinos
 - 10^{20} eV cosmic rays from z~1-10 lead to EeV neutrinos through photopion interactions

Probable sources:

- Active galaxies:
 - strong evidence for acceleration of particles, EeV energies probable
- Gamma-ray bursters:
 - PeV to EeV predicted by many models

Exotic (but very interesting) sources:

- Topological defects
 - early universe relics (of many sorts)

Possibilities for radar detection of

- Ionization produces a tenuous plasma, line densities of 10¹⁴ m⁻¹ for showers of 10²⁰ eV at 10 km altitude
 - Similar to meteor electron line densities, but meteors at h~90km
- Plasma frequencies near the core of the shower may be ~10 MHz
 - Reflectivity at low frequencies may be very high could account for early HF radar events
- High altitude air showers accessible to radar
 - Of order half of all high energy air showers do not produce particles at ground level, but occur as highly inclined showers at h=15-25 km
- Radar EAS detection could have high duty cycle
- Was original motivation for Lovell telescope

Radio Emission from Air Showers: History

- First discovery: Jelley et al. (1965), Jodrell Bank array at 44 MHz
- Confirmation from various groups in the 60ies
- Detections made from 2-520 MHz (e.g. Fegan 1970)
- Shower energies in the range 10^{17} - 10^{19} eV

Advantages of Radio Airshowers

- Particle detectors only measure a small fraction of electrons or muons produced
- Height of cosmic ray interaction depends on energy
- Energy calibration is greatly improved by additional information (e.g., Cerenkov)
- Radio could
 - Observe 24hrs/day
 - See evolution of shower
 - Coherent emission reveals shape

Radio measurements are usually triggered by particle detectors

Radio-Emission from Air Showers: Current Activities

- Work ceased almost completely in the seventies (interference)
- Radio-experiment at CASA/MIA arrays (Rosner & Suprun 2001) failed because of man- and self-made interference
- An isolated group at Gauhati University (India) is observing regularly at 2-220 MHz
- Monte Carlo air shower radio code developed by Dova et al.
- RICE Searching radio emission from neutrino induced showers in ice at the AMANDA site in Antarctica
- Search for radio emission on the moon (neutrinos; Alvarez-Muniz & Zas 2000; Gorham et al. 1999)

Radio Properties of Airshowers: Radio Amplitude – Empirical Results

$$\mathcal{E}_{\nu} = K \frac{E_p}{10^{17} \text{ eV}} \sin \alpha \cos \theta \exp \left(-\frac{R}{R_0(\nu, \theta)}\right) \quad \mu \text{V } m^{-1} \text{ MHz}^{-1}$$
Allan (1971)

- Constant $K\sim15$, $R_0\sim110$ m, spectrum flat from $\sim40-100$ MHz?
- $S_v = \epsilon_0 c \, e_v^2 / MHz \Rightarrow S_v = 26.5 \, MJy \, (e_v / 10 \, \mu V \, m^{-1} \, MHz^{-1})^2$
- R is distance from shower axis, relation corresponds to ~1 degree half-angle emission cone
- Here α is geomagnetic angle, θ is zenith angle, but not measured past ~50 deg.
- This relation is based on <u>near field measurements</u>: Fresnel zone for shower radio emission extends several tens of km, most data is from D~5-7 km!

Radio Properties of Airshowers: Energy Dependence of Amplitude

- Particle number:
 N~E_p/GeV
- Coherent or Incoherent radiation: $V \propto N \text{ or } V \propto N^{1/2}, S_n \propto V^2$
- $\Rightarrow S_{\nu} \propto E_{\rm p} \text{ or } E_{\rm p}^2$
- Experimental results vary between the two cases.
- Note: shower height is energy dependent!

Radio Properties of Airshowers: Frequency Spectrum

- Simultaneous measurements at four frequencies between 44 and 408 MHz (Spencer 1969)
- Spectrum decreases as $V \propto v^{-1}$ or $S_v \propto v^{-2}$
- May continue down to 2 MHz (Allan et al. 1969).
- Noise level favors 40-50 MHz observations

Radio Properties of Airshowers: Spatial Extent

- The particles move as a flat (2-3 m thick) pancake around a central core through the atmosphere.
- The radio emission falls off steeply beyond a characteristic distance from the shower core (R₀=50-500m)⇒beaming

Amplitude normalized to $E_p = 10^{17} \text{eV}$

Radio Properties of Airshowers: Event Rates

- CR flux drops as E_p^{-2}
- ~1 particle m⁻² sterad⁻¹ year⁻¹ at $E_p \sim 10^{16} \text{ eV}$
- For a highly directional hundred meter dish (10⁻⁴ sterad) this gives an event rate of only ~1/yr.
- Low-gain antennas have commonly been used

Radio Properties of Airshowers: Pulse Shapes

- The pulse shape measurements are usually bandwidth limited
- $\delta t \sim 1/\delta v$
- At low frequencies δ ν usually was of order 1 MHz
- $\Rightarrow \delta t \sim 1 \mu s$
- ⇒At 520 MHz a resolution of 70 ns was achieved

Radio Properties of Airshowers: Pulse Shapes

- Total shower duration is 30 μs (10 km/c)
- Doppler effect shortens pulse to 10 ns
- Pulses were typically unresolved with a bandwidth limited resolution of 1 μs.
- Unconfirmed structure (doublets) on 70 ns scale

Radiation Mechanism: Coherent Synchrotron!?

AKA: "a form of Lorentz-boosted dipole radiation from geomagnetic charge separation"

- geomagnetic charge separation"
 The characteristic energy where electrons
 disappear through strong ionization losses is 30100 MeV, i.e. γ~60-200.
- Geomagnetic field is 0.3 Gauss
- Electrons will "gyrate" along a small arc
- Electrons are in a thin layer of 2 meters thickness, i.e. less than a wavelength at 100 MHz
- Coherent emission can be produced (gives N² enhancement), beamed into propagation direction

Radiation Mechanism: Coherent Synchrotron!?

$$P_{q} = \frac{2q^{2}\vec{r}^{2}}{3c^{3}} \quad \vec{r} = \frac{e}{2mc}\vec{v} \times \vec{B}$$

$$\Rightarrow P_{q} = \frac{2q^{2}}{3c^{3}}?^{4} \frac{q^{2}v_{\perp}^{2}B^{2}}{2^{2}m^{2}c^{2}}$$

$$\Rightarrow P_{q} = \frac{2q^{4}}{3c^{5}m^{2}}?^{2}v_{\perp}^{2}B^{2}$$

$$q = N \cdot e; m = N \cdot m_{e}$$

$$\Rightarrow P_{q} = N^{2}P_{e}$$

- Synchrotron power is given by the Poynting vector (charge & accel.)
- Acceleration is due to the Lorentz force
- N electrons act coherently as one particle of charge $N \cdot e$ and mass $N \cdot m$
- \Rightarrow Power is increased by N² (amplitudes add coherently)

Radiation Mechanism: Coherent Synchrotron!?

$$B = 0.3G$$
 ? = 60 $N_e = 10^8 E_{p,17}$ • Characteristic values for

$$A = p(10 \,\mathrm{km} \cdot 0.5^{\circ})^2$$

$$?_{c} \sim \frac{3e}{4pm_{e}c} ?^{2}B \sim 4.5 \text{ GHz}$$

$$S_{?} = N_e^2 P_e A^{-1} ?^{-1} \left(\frac{?}{?_c} \right)^{1/3}$$

 $S_{z}(100 \,\mathrm{MHz}) \sim 40 \,\mathrm{MJy} \cdot E_{p,17}^2$

- airshowers
- At the characteristic frequency coherence is not achieved due to finite thickness (decreasing spectrum)
- Predicted value matches fairly well observations.

Neutrino-induced air showers

At 1019 eV, horizontal neutrinos have 0.2% chance of producing a shower along a ~250 km track, 0.5% at 10²⁰ eV

Could be distinguished from distant cosmic ray interactions by radio wavefront curvature: neutrinos interact all along their track with equal probability, thus are statistically closer & deeper in atmosphere

- Example of tau neutrino interactions: resulting tau lepton decay produces large swath of particles, out to 50km
- Left: ground particle density from electron decay channel. Right: from pion decay channel
- Results from studies for Auger air shower array, Bertou et al. 2001, astroph/0104452

FORTE: A space-based 10²⁰ eV neutrino & cosmic ray detector?

FORTE: Fast On-orbit Recording of Transient Events satellite

- Pegasus launch in mid-1997
 - 800 km orbit, 3 year planned life
 - Testbed for non-proliferation & verification
 - sensing
 US Dept. of Energy funded, Los Alamos & Sandia construction & operation
 - Scientific program in lightning & related atmospheric discharges
- 30-300MHz range, dual 20 MHz bands, 16 1MHz trigger channels
 - \sim 3M triggers recorded to date
- FORTE can trigger on radio emission from Giant air showers E~100 EeV
- Preliminary estimates: could be ~50-100 10²⁰ eV cosmic ray events in sample
 - Distinct from lightning, could be recognized as isolated events in clear weather regions far from urban noise
 - Analysis (JPL,LANL) planned this year

Scientific Goals

- Connects to "Origin of Cosmic Rays" & "Bursting Universe"
- Investigate extremely short-lived bursts
- Understand radio emission from air showers (polarization, spectrum, energy dependence, extent, evolution)
- Improve energy calibration of air shower arrays
- Study composition of UHECR
- Detect UHECR and solve GZK mystery
- Search for ultra-high energy neutrinos in the atmosphere, from the ground, on the moon

NRW Airshower Array The Idea

- Measure cosmic rays from 10¹⁶ to 10²⁰ eV
- Need 5000 sqm with station spacing of a few 10²⁻³ m
- Local coincidence
- Place stations on public buildings and schools
- Connect through internet
- Stations transportable, could be installed near LOFAR
- Money available for astroparticle physics

Considerations for a large ground array

- Intrinisic pulse widths from all processes are 10 ns or less
- high sampling bandwidth for triggered events, pulse shape may be critical discriminator
- Antenna BW may be limitation, but full BW should be sampled
- Low directionality, large beam
- High dynamic range (1-bit sampling is not enough)
- External trigger possible
- Short-term storage for burst data and retrospective beam forming
- For lunar pulse observations, dedispersion is an issue: daytime pulse smearing of several microsec for ~10 MHz of BW at ~100 MHz
- Low elevation angle beam response is desirable
- Very interesting events come at high zenith angles or from below (e.g., neutrinos)

Considerations (cont.)

- An array of at least ~100 km diameter required to be competitive with existing & planned ground arrays
 - ~3000 km² sr necessary, larger is better
 - Spacing of several hundred m to 1 km for thresholds of 1-10 EeV
 - Dual polarization & ns pulse timing will help with interference rejection
 - Can one "image" the shower and see its evolution?
 - An R&D program is necessary to develop solid criteria for recognizing these events if they are to be recognized without particle coincidence

Conclusions

- Time is ripe to renew efforts in air shower radio detection
 - The radio airshower connection is still not well understood
 - Potentially powerful & economic approach toward super-GZK astroparticle physics
 - New results in coherent radio pulses from cascades indicate that these effects can be very strong at high energies
 - RF technology amplifiers, receivers, digital techniques—are greatly improved since 1970 → ready for new applications
- Detection of EeV neutrinos will pave the way for a new astronomy
 - Air shower radio detection may be the dark horse in this race!

But remember

" ... a single tractor in an adjacent field has been known to wreak havoc with reception of air shower pulses in an otherwise favourable site."

(Allan 1971)